Kalpesh Haria Solution Set

Indian Statistical Institute, Bangalore Centre
Solution set of M.Math II Year, Mid-Sem Examination 2012

Fourier Analysis

1. (a) Show that _
sup I/_ f(y)Dn(y)dy\z/ 1Dy (y)| dy.

feCp|—n,7) -7
| fllo<1

(b) Show that

™

lim | D, (y)| dy = oc.

n—oo
—T

(c) Deduce from (b) that for a dense G set in Cy,[—m, 7], sup,, [(S,f)(0)| = oo.

Proof. Part (a): Let X = (Cy[—m,7],||.|l«), Y = C. Define the linear operator
T,: X =-Y,neNby

T.(7) = $uf0) = [ S@)Daly) dy

Note that ||T,, f|| < [/ | Dy ()] dy] || f || which implies ||| g/ | Dy, (y)| dy. Since

—T

D,,(y) has a finite number of zeros, ¢ = sgn D,,(y) has a finite number of jump discon-
tinuities. Therefore by modifying it on a small neighbourhood of each discontinuities,
for given m € N there exists f,,, € X with ||fi]le < 1 and sup{|(fm — 9)(y)| : vy €

1 1
[—m, 7]} < — Note that |T,,(fm)] > (1 — E)/ |Dy(y)| dy, m € N. Thus

—T

= s | / :f(y)Dn(’y) dy| = / " 1Du(y) dy.

feCpl—m,m -
|l fllo<1

Part (b): We know that

2n + 1 ify=0,+£27, +4n, .. .;
Dn(y) = sin(2n +1)(Y) ,
— otherwise.
sin ¥

2

/7r | Dn(y)| dy > 2/7r |Sin(2n+ D) | dy

n Y
-7 I Sin 9
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0 Yy
>4zn:/k” | sin y|
T = JE-nye km

8 w1
> = —
T k

k=1

Thus
lim | Dy (y)|dy = oo

n—oo [__

Part (c): Using part (b) and (a) we have ||T,|| — oco. Now by an application of
Uniform Boundedness Principle to the family {7}, : X — Y :n=1,2,...} of bounded

linear maps there exists a dense G set D in X such that for all f € D we have

sup |(Sn.f)(0)] = oo. O

2. Let f: [-m, 7] = R be continuous with f(—7) = f(7) extend f to R by periodicity

conditions. Assume that for some a > % we have

/”}f(i“rh)—f(if)’z

ha

Show that Z |f(n)] < co.

n=—oo

Proof. Define gi(z) = f(x + h) — f(z), x € [-7, 7] and h € R. Observe that
du(n) = (™~ 1)f(n), heR and |gu(n)| = 2/sin 2| f(n)

By hypothesis, there exists M > 0 such that

/ lgn () > dx = Mh>*.

Now Parseval’s identity yields

27 Z lgn(n Mhn*.
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Then
2w§:4| sin @|2|f(n)|2 = Mh*
— 00 2 .

Choose h = 21 for arbitrary but fix & € N and 271 < |n| < 2% which implies

In | ., nh 1
> =
)I? = Isin(Z-)] = 5 and

M (6%
Z|f < TG
By Cauchy Schwarz inequality,
~ 1 o 1
om0 Y fm)P)e
2k—=1<|n|<2k 2k—1<|n|<2k 2’“*1<|n|<2k
M x
< 2k‘ 2k 1
< P ()]
\/Mwa_% 1

2 la=pk

% < |n| < 5 Then |sin(——

By taking summation over k € N it follows that (in addition use the fact that | f(0)[2 <
00 = [(0)] < o0),

> 1f(n)] < o O

n=—oo

3. Let
V1—{f R—C: f Z akX[Ick—H)

k=—o00

with Z lax|* < oo and

k=—0oc0

={g:R—C: f(t) Zbkx[k ket

k=—o00

with Z |br|* < co. Find a relation between Vi and Vj like Vo C V4 or Vi C Vp. Let
k=—o0

Wy be the orthogonal difference. Show that W = closed linear space{¢p(t — k) : k €
Z} for a suitable orthonormal family {¢(t — k) : k € Z}.

3
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Proof. Let f € Vi. Then f(t) = Y 70 axXpk+1)(t) with Z lax|* < oo. Define
k=—o00

for k € N,

bgk:ak 1f]€§t</€~|>%,

g(t) =
b2k+1:ak 1fk'—|—%§t<k—|—1

Then g = f and g € V. Thus V; C V4.

Let g € Wy = Vo © V4. Then g(t) = > oo ka[g,%)(t) with Z br|? < oo and
k=—oc0

g L Vi, This implies g L fi = Xpx+1) for each k& € Z. This orthogonality gives
1
us bog, + bopr1 = 0 for each k& € N. Then {ey(t) = E[X[k’%) — X2, kﬂ)}(t) :

1
VB

k € Z} is a suitable orthonormal family in W, such that Span{e(t) =
Xz () ok € Z} =W,

[

4. Let f € L*(R) be such that Qf € L*(R) where (Qf)(t) = tf(t). Let ¢ € C*(R) be

such that ¢(t) =1 for |t] <1 and 0 for |[t| > 2,0 < < 1. Define f,(t) = (=) f(t).
Show that

/
n
Tim |l £ = fI* + 1Qfn — QI = 0.

Proof. Note that f,(t) — f(t) — 0 as n — oo (pointwise) and |(f, — f)(¥)]* =
0(0) 1L < 170 (0<% < 1), Since |72 € L'(R), by applying dominating
convergence theorem we have ||f, — f|l2 — 0. Similarly, (Qf.)(t) — (Qf)(t) — 0
(pointwise) and |(Qf, — Qf)(£)]* = |1/J(%) —1PRPFOP < BPFOP 0 < v <

1). Since |Qf|* € L'(R), by applying dominating convergence theorem we have
1Qfn — Qfl2 — 0. O

5. Let f € LY(R) with f(t) = 0 for |t| > k for some k, Define g : C — C by g(z) =
ffk f(t)e "#dt. Show that g is analytic and calculate ¢'(z).

Proof. Let z = x4+ 1y and ¢(z) = u(x,y) + iv(z,y). From the expression of g we can

write
k

k
u(z,y) :/k e f(t)costrdt and v(z,y) = —/ e W f(t)sintz dt.

—k

4
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Then it is easy to verify that all partial derivatives u,, u,, v, v, exist and continuous
u, = v, and u, = —v, (Cauchy Reimann Equations) at all (z,y) € R% So ¢ is an

entire function and its derivative at any point is given by

9'(2) = ua(z,y) + ive(2,y)

k k
=— / te' f(t)sintx dt — z/ te™ f(t) costx dt

k —k

k
= / te f(t)e " dt

—k
k .

= —i / tf(t)e "% dt.
—k

[
—itk

V2r

6. Let A= [—2m, —7| U [m, 27, ex(t) =
for L2(A).

for k € Z. Show that {e; : k € Z} is ONB

Proof. Let k,m € Z with m > k

e—itk e—itm 1 - A 27 ' .
<\/ﬁ7 \/%>L2(A) — %[/ ez(m— )t dt +/ eZ(m— )t dt]
—27 s
1 eit(m—k) 1 6z't(m—k) )
- T 4 [—— ] =0
21 i(m — k)]_27r * 27T[z'(m - /f)]7r

—itk e—itk

—_ — =1.
V2T 27 >L2(A)

7. Let f € L'Y[1,00). Show that there exists a; in [k, k + 1] such that f(az) — 0 as

k — oo. Note that a, — oo.

Further, it is clear that ( O

Proof. Define ¢, := inf |f(x)|. For given € > 0,
x€lk,k+1]

Case 1: if there exists kg € N such that ¢, < € for all & > kg, then ¢, — 0. Thus
there exists ay, € [k, k + 1] for each k € N such that |f(ax)| < € for k > ky. Hence the

result follows in this case.

Case 2: if there does not exists any ky € N such that ¢, < € for all £ > ky, then ¢, > €
for infinitely many k£ € N and which contradicts to f € L[1,00). O
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8. Let f € L'(R), f is absolutely continuous and f’ € L'(R). Find a relation between
f(s) and f'(s) and prove your claim.

Proof. Since f is absolutely continuous on R, for any ¢t € R we have

0 +/Otf’(t)

Since f' € L'(R) the following limits exist

lim f(¢t)= f(0)+ lim 1'(@).

t—=to0 t—=Foo [
The above limits must equal to zero because of f € L'(R), otherwise, if tlim fit) =
—00

L
L # 0, then [f(t)] > ) for all ¢ large enough which contradicts to f € LY(R).
Similarly, tlim f(t) = 0. Now using these limits in the following integration by parts
——00

—ist
t=—00 / f dt

we have

/ f —zstdt f( —ist |0
= is/ Ft)e ™ dt = isf(s).

9. Let u be a complex valued measure on R with A(R) < oo where

R) = sup { Z |1(E;)| - Ey, Es, ... is a partition of R}.

(a) Show that A = {x: u({z}) # 0} is a countable subset of R.
(b) Show that

17
Sy GG

1
Proof. Note that A = (> {z : |[u({z})] > —}. Let us denote B, = {z : |u({z})| >
n

1
—} for each n € N. We claim that the set B, for each n € N is a finite set. Suppose if
n
possible B,, is not a finite set, then there exists a countable infinite subset {z1, z, ...}

1
of B,. Say E; = {xz;}, j=1,2,....Since z; € B,,, we have |u(E;)| > — which implies
n
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Z|,u /)| = oo but by hypothesis Z|,u )| < oo (beacuse Ey, By, ...,R\UZ, E;
j=1
is a partition of R). Thus B, is a finite set for each n € N and A is a countable union

of finite sets. Hence A is a countable set.

Let us denote pu({z;}) = a;. Since A is countable set, we can write yu = >, apdy,
where 0, is the Dirac measure for each j. By the definition of Fourier transform for

finite measure we have

a(t) = / e " du(z) = Zake_””kt.

o k

Then

|ﬂ(t)’2 — (Z ake—ixkt)(z ~ z:v] Z |ak| + Zakza o ilwn—z;)t

k J k#j

1
Integrating over the interval [—T, 7] and scaling by o7 e obtain

1 T 2 aka’] —i(zg—xj)t
o7 ()] dt = E Jax|? +§ Ddt
-7

where, by Fubini’s theorem, we can interchange summation and integration since

> ki |@kaj| < oo. Observe that

T
lim — / e~ @)t gy — (), k # 5.

An application of the dominated convergence theorem, we can compute the limit as

T — oo term-by-term to obtain the desired conclusion. O

10. Find Fourier transform of
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Proof. Part (a): Since power series converge uniformly within all circles of conver-

gence, and termwise integration is valid for uniformly convergent series,

_ /_O; [i (_Zs)n}e—f dx

I
o
|
S|
—| ®»
~ O
3
I
] 8
Q)
vl
&
3
QU
&

S

The integal value is zero if n is odd; if n = 2m, then an application of Gamma

function yields the following

/ e~ T dy = \/%< m)

. ml2m’
Replacing these facts in the above expression it follows that

2

f(s) = Vare 7

— ar . =
Part (b): Recall that 2 f(x)(s) = z'"d—f(s). Then using part (a) we have x”e’;(s) =
Sn
l o 27re_§.

Part (c): For s # 0,

Xiab] () =/ Xjape ™" dx

b —isT
. e b
_ —isz _
= / e "dr = [ -y }a
a
e—isa _ e—zsb

15 ;
when s = 0, then X[,4(0) = b — a.

Part (d): Define f,(z) = %X[mnﬂ] (z) for n € N. We know that f, € L'(R) N
T
L?(R). The Fourier transform of f, is given by

fuls) = / T @)X () da

Ny
8
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n xe—ism
= dx
/_n 2+ 1

n e
:/ x(cos sz — isin sx) i
-n

241

_ o /" x sin(sz) .
0

2+ 1

Now using the definition of Fourier transform for L?(R) we have the following limit

pointwise a.e. on R,

fls) = lim ()

9 lm " xsin(sz) i
n—oo Jq [EQ +1
— _9i / " zsin(sz) S;n(m dx
o x*+1
— 9 / ~ zsin(sz) S;n(sm) dx
o x°+1
= —22'7T62 (for s > 0)
= —ime °.
Observe that for s < 0, f(s) = —f(—s) = ime®. Thus f(s) = —ir sgn(s)e . O



